Constitutive Model Base Class
The base class for all FEMpy constitutive models
The constitutive model defines the underlying PDE being solved. Currently, this base class is defined for solid mechanics problems, but in future it may be extended for other PDE types.
It contains information on:
- The number of spatial dimensions the model is valid for
- The number and names of the PDE states
- The number and names of the stresses and strains for this model
- The number and names of the design variables associated with the PDE
- The names of functions which can be computed for this constitutive model (e.g mass, Von Mises stress etc)
And contains methods to:
- Given the coordinates, state value, state gradient, and design variables at a point, compute:
- The strain components
- The sensitivities of the strain components
- The stress components
- The sensitivities of the stress components
- The pointwise mass
- The volume integral scaling parameter (e.g thickness for 2D plane models or \(2 \pi r\) for 2D axisymmetric problems)
- The weak form residual
- The weak form residual Jacobian
- Other arbitrary output values (e.g failure criterion)
Source code in FEMpy/Constitutive/ConstitutiveModel.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
__init__(numDim, stateNames, strainNames, stressNames, designVars, functionNames, linear=True)
summary
Parameters
numDim : int Number of spatial dimensions the model is valid for stateNames : list of str Names for each state variable strainNames : list of str Names for each strain component stressNames : list of str Names for each stress component designVars : dict A nested dictionary of design variables, with the key being the name of the design variable and the value being a dictionary that contains various pieces of information about that DV, including: - "defaultValue" : The default value of that DV functionNames : list of str The names of functions that can be computed with this constitutive model linear : bool, optional Whether the constitutive model is linear or not, a.k.a whether the weak residual is a linear function of the states/state gradients, by default True
Source code in FEMpy/Constitutive/ConstitutiveModel.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
computeStrainStateGradSens(states, stateGradients, coords, dvs)
abstractmethod
Given the coordinates, state value, state gradient, and design variables at a bunch of points, compute the sensitivity of the strains to the state gradient at each one
Parameters
states : numPoints x numStates array State values at each point stateGradients : numPoints x numStates x numDim array State gradients at each point coords : numPoints x numDim array Coordinates of each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
numPoints x numStrains x numStates x numDim array Strain sensitivities, sens[i,j,k,l] is the sensitivity of strain component j at point i to state gradient du_k/dx_l
Source code in FEMpy/Constitutive/ConstitutiveModel.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
computeStrains(states, stateGradients, coords, dvs)
abstractmethod
Given the coordinates, state value, state gradient, and design variables at a bunch of points, compute the strains at each one
Parameters
states : numPoints x numStates array State values at each point stateGradients : numPoints x numStates x numDim array State gradients at each point coords : numPoints x numDim array Coordinates of each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
numPoints x numStrains array Strain components at each point
Source code in FEMpy/Constitutive/ConstitutiveModel.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
computeStressStrainSens(strains, dvs)
abstractmethod
Given the strains and design variables at a bunch of points, compute the sensitivity of the stresses to the strains at each one
Parameters
strains : numPoints x numStrains array Strain components at each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
sens : numPoints x numStrains x numStates x numDim array Strain sensitivities, sens[i,j,k,l] is the sensitivity of strain component j at point i to state gradient du_k/dx_l
Source code in FEMpy/Constitutive/ConstitutiveModel.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
computeStresses(strains, dvs)
abstractmethod
Given the strains and design variables at a bunch of points, compute the stresses at each one
Parameters
strains : numPoints x numStrains array Strain components at each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
numPoints x numStresses array Stress components at each point
Source code in FEMpy/Constitutive/ConstitutiveModel.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
computeVolumeScaling(coords, dvs)
abstractmethod
Given the coordinates and design variables at a bunch of points, compute the volume scaling parameter at each one
The volume scaling parameter is used to scale functions that are integrated over the element to get a true volume integral. For example, in a 2D plane stress model, we need to multiply by the thickness of the element to get a true volume integral. In a 2D axisymmetric model, we need to multiply by 2pir to get a true volume integral.
Parameters
coords : numPoints x numDim array Coordinates of each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
numPoints length array Volume scaling parameter at each point
Source code in FEMpy/Constitutive/ConstitutiveModel.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
computeWeakResidualJacobian(states, stateGradients, coords, dvs)
Given the coordinates, state value, state gradient, and design variables at a bunch of points, compute the weak residual jacobian integrand
\(j = (d\epsilon/du')^T \times d\sigma/d\epsilon \times d\epsilon/du'\)
Where:
- \(d\epsilon/du'\) is the sensitivity of the strain to the state gradient
- \(d\sigma/d\epsilon\) the sensitivity of the stress to the strain gradient
This function computes de/du'^T * sigma * scale
at each point
Parameters
states : numPoints x numStates array State values at each point stateGradients : numPoints x numStates x numDim array State gradients at each point coords : numPoints x numDim array Coordinates of each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
Jacobians : numPoints x numDim x numStates x numStates x numDim array The sensibility of the weak residual integrand components to the state gradients at each point
Source code in FEMpy/Constitutive/ConstitutiveModel.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
computeWeakResiduals(states, stateGradients, coords, dvs)
Given the coordinates, state value, state gradient, and design variables at a bunch of points, compute the weak residual integrand
For a solid mechanics problem, the weak residual, derived from the virtual work principle is:
\(R = \int r dV = \int (du'/dq)^T (d\epsilon/du')^T \sigma \theta d\Omega\)
Where:
- \(du'/dq\) is the sensitivity of the state gradient to the nodal state values, this is handled by the element
- \(d\epsilon/du'\) is the sensitivity of the strain to the state gradient
- \(\sigma\) are the stresses
- \(\theta\) is the volume scaling parameter
- \(\Omega\) is the element
This function computes \((de/du')^T * \sigma * \theta\) at each point
Parameters
states : numPoints x numStates array State values at each point stateGradients : numPoints x numStates x numDim array State gradients at each point coords : numPoints x numDim array Coordinates of each point dvs : dictionary of len(numpoints) array design variable values at each point
Returns
residuals : numPoints x self.numDim x self.numStates array Weak residual integrand at each point
Source code in FEMpy/Constitutive/ConstitutiveModel.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
getFunction(name)
abstractmethod
Return a function that can be computed for this constitutive model
Parameters
name : str Name of the function to compute
Returns
callable
A function that can be called to compute the desired function at a bunch of points with the signature,
f(states, stateGradients, coords, dvs)
, where:
- states is a numPoints x numStates array
- stateGradients is a numPoints x numStates x numDim array
- coords is a numPoints x numDim array
- dvs is a dictionary of numPoints length arrays
Source code in FEMpy/Constitutive/ConstitutiveModel.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|